viernes, 8 de agosto de 2014

La Simetría I

Habla Hegel acerca de la Simetría: “Con la Regularidad está conectada la Simetría. La forma en efecto no permanece en esa extrema abstracción de la igualdad en la determinidad. A la igualdad se agrega algo desigual, y la diferencia irrumpe en la huera identidad. Con ello surge la Simetría. Esta consiste, no en el hecho de que una forma abstractamente igual se repita sólo a sí misma, sino que se enlace con otra forma de la misma índole, la cual, considerada para sí, sea igualmente una determinada igual a sí misma, pero, puesta frente a la primera, sea desigual a ésta. De este enlace deben brotar una igualdad y una unidad nuevas, ya más ampliamente determinadas y en sí más múltiples.”
  • Con la Regularidad está conectada la Simetría
La conexión de la Simetría con la Regularidad consiste en que la Simetría tiene como punto de partida la Regularidad.
  • La Forma en efecto no permanece en esa extrema abstracción de la igualdad en la determinidad.
Cuando decimos abstracto decimos que esta carente de determinaciones, o que tiene muy poca determinaciones. La Forma A que se muestra en la imagen tiene únicamente la determinación de la repetición igual de una y la misma figura; por eso decimos que es extremadamente abstracta.
  • A la igualdad se agrega algo desigual, y la diferencia irrumpe en la huera identidad.
¿Cuándo una cosa se sale de su extrema abstracción? Cuando surge la diferencia. Concretar es mostrar diferencias. El significado de huera es: carente de desarrollo. Una semilla que no germina es una semilla huera, que no surge en ella la diferencia, las diferentes partes de una planta: hojas, flores, frutos.
  • Con ello surge la Simetría. Esta consiste, no en el hecho de que una forma abstractamente igual se repita a sí misma
La forma abstractamente igual que se repite a sí misma es el triángulo rectángulo.
  • sino que se enlace con otra forma de la misma índole,
Decimos que esta otra forma es de su misma índole, porque esta otra forma es también un triángulo,”
  • la cual, considerada para sí, sea igualmente una determinada igual a sí misma, pero, puesta frente a la primera, sea desigual a ésta.
Pongamos atención a la expresión considera para sí; lo contrario sería considerada para otro. Tenemos dos formas, dos figuras, la forma x  y la forma y. Las formas x e y son de la misma índole; la forma y surge de la forma x: es el resultado de que el triángulo haga un giro de 180º en relación a su altura. La forma x considerada para sí es igual a sí misma, y la forma y considerada para sí es también igual a sí misma, pero, puesta frente al forma x es desigual a ésta. Así ha surgido la Simetría.la forma x se ha enlazado con la forma y; estas dos formas, yuxtapuestas, constituyen ahora una unidad. La repetición igual de esta unidad da lugar a una nueva regularidad: Forma B.
  • De este enlace deben brotar una igualdad y una unidad nuevas, ya más ampliamente determinadas y en sí más múltiples.
 En la Forma B la forma x se enlaza con la forma y, surge una unidad nueva, la unidad de los dos triángulos; en la Forma A la unidad está constituida por un solo triángulo. En la Forma B la igualdad que surge es también nueva: la igualdad (la repetición) del conjunto de los dos triángulos.

No hay comentarios:

Publicar un comentario